skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nisak, Azmain H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hαemission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hαin emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hαactivity for stars in the gap. We also identify a new region at 10.3 <MG< 10.8 on the main sequence where fewer M dwarfs exhibit Hαemission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hαactivity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars. 
    more » « less
  2. Abstract As part of a comprehensive effort to characterize the nearest stars, the CHIRON echelle spectrograph on the CTIO/SMARTS 1.5 m telescope is being used to acquire high-resolution (R= 80,000) spectra of K dwarfs within 50 pc. This paper provides spectral details about 35 K dwarfs from five benchmark sets with estimated ages spanning 20 Myr–5.7 Gyr. Four spectral age and activity indicators are tested, three of which aligned with the estimated ages of the benchmark groups—the Naidoublet (5889.95 and 5895.92 Å), the Hαline (6562.8 Å), and the Liiresonance line (6707.8 Å). The benchmark stars are then used to evaluate seven field K dwarfs exhibiting variable radial velocities for which initial CHIRON data did not show obvious companions. Two of these stars are estimated to be younger than 700 Myr, while one exhibits stellar activity unusual for older K-dwarf field stars and is possibly young. The four remaining stars turn out to be spectroscopic binaries, two of which are being reported here for the first time with orbital periods found using CHIRON data. Spectral analysis of the combined sample of 42 benchmark and variable radial velocity stars indicates temperatures ranging from 3900 to 5300 K and metallicities from −0.4 < [Fe/H] < +0.2. We also determine log g = 4.5 4.7 for main-sequence K dwarfs. Ultimately, this study will target several thousand of the nearest K dwarfs and provide results that will serve present and future studies of stellar astrophysics and exoplanet habitability. 
    more » « less